

An expeditious synthesis of 1,5-benzodiazepine derivatives catalyzed by CdCl₂

M A Pasha* & V P Jayashankara

Department of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, India

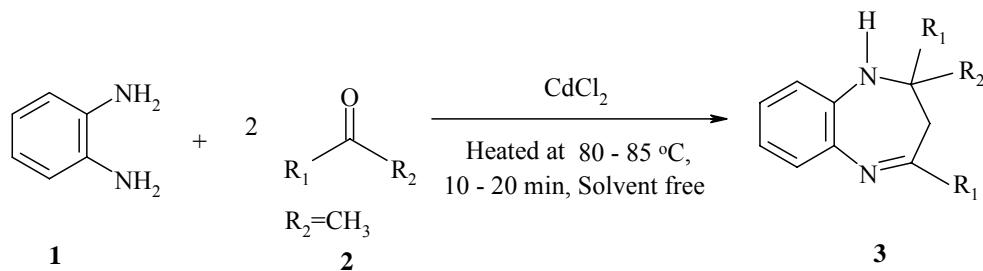
E-mail: m_af_pasha@yahoo.co.in

Received 26 October 2005; accepted (revised) 19 July 2006

2,3-Dihydro-1*H*-1,5-benzodiazepines have been synthesized by the condensation of *o*-phenylenediamine and cyclic or acyclic ketones in the presence of CdCl₂ as catalyst at 80-85°C temperature. The yields are high and the reactions go to completion within 10-20 min.

Keywords: 2,3-Dihydro-1*H*-1,5-benzodiazepines, *o*-phenylenediamine, ketones, CdCl₂, solvent-free reaction

IPC Code: Int.Cl.⁸ C07D


In 1971 Sternbach introduced benzodiazepines as drugs¹. While some benzodiazepines are used as anti-convulsant, anti-anxiety, analgesic, sedative, antidepressive and hypnotic agents^{2,3}, some other benzodiazepine derivatives find application in industries such as photography, as dyes for acrylic fibers³ and as valuable synthons for the preparation of other fused compounds such as triazolo^{4a}, oxadiazolo^{4b}, oxazino^{4c} or furobenzodiazepines^{4d}.

Expedited synthesis of 2,3-dihydro-1*H*-1,5-benzodiazepines and related derivatives and improvements in the syntheses have been sought continuously. Thus, the preparation of this type of heterocyclic nucleus is of much importance. Consequently, a few methods have been reported with reagents such as InBr₃ (ref. 5), BF₃.OEt₂ (ref. 6), MgO-POCl₃ (ref. 7), polyphosphoric acid-SiO₂ (ref. 8), solid superacid sulfated zirconia⁹, zirconia solid acid¹⁰, Yb(OTf)₃ (ref. 11), Sc(OTf)₃ (ref. 12), molecular iodine¹³, under microwave irradiation using acetic acid¹⁴, Al₂O₃-P₂O₅ (ref. 15), polymer (PVP)

supported ferric chloride¹⁶, CeCl₃-NaI-SiO₂¹⁷ and ionic liquids¹⁸. Many of the existing methods involve expensive reagents, strongly acidic conditions, longer reaction times, high temperatures, unsatisfactory yields, cumbersome product isolation and environmental pollution. Therefore, there is a need for simple and environmentally friendly processes for the synthesis of 2,3-dihydro-1*H*-1,5-benzodiazepines.

Results and Discussion

In continuation of the work on the synthesis of medicinally important molecules under environmentally safe conditions¹⁹, it has been found that CdCl₂, which is an inexpensive and common chemical, can efficiently catalyze this reaction. Synthesis of 2,3-dihydro-1*H*-1,5-benzodiazepines using acyclic, cyclic and aromatic ketones and *o*-phenylenediamine (2:1 equivalents respectively) in the presence of CdCl₂ (catalytic amount) at 80-85°C under solvent free condition is achieved in good to excellent yields within 10-20 min as shown in **Scheme I**.

Scheme I

Table I — Condensation of *o*-phenylenediamine with acyclic, cyclic and aromatic ketones in the presence of catalytic CdCl₂

Compd	Ketone 2	Yield (%) ^a	Product ^b 3
a		94	
b		80	
c		92	
d		70	
e		80	
f		82	
g		75	
h		92	

^a Isolated yields.^b All the products are known, characterized by IR, MS and NMR spectral analysis and compared with the authentic samples.

The same process was successfully extended to other 1,5-benzodiazepine derivatives and the results are summarized in **Table I**. Treatment of *o*-phenylenediamine with acetone (Compd. **2a**, **Table I**) in the presence of CdCl_2 at 80-85°C (a water condenser was fixed and ice-cold water was circulated to condense acetone) gave 2,2,4-trimethyl-2,3-dihydro-1*H*-1,5-benzodiazepine in 94% yield within 10 min. Similarly acyclic ketones: 2-butanone, 3-pentanone and isobutylmethylketone (**Table I**, Compd. **2b, c** and **d**) and cyclic ketones: cyclopentanone, cyclohexanone and cycloheptanone (Compd. **2e, f** and **g**) reacted smoothly to give the corresponding 1,5-benzodiazepines in 70-92% yield. Acetophenone (Compd. **2h**) also reacted easily with *o*-phenylenediamine within 20 min to give 2-methyl-2,4-diphenyl-2,3-dihydro-1*H*-1,5-benzodiazepine in 92% yield.

Experimental Section

Melting points were determined on a Büchi melting point apparatus and are uncorrected. IR, ^1H and ^{13}C NMR and GC-MS were recorded on Nicolet 400D FT-IR spectrophotometer, 200 MHz Brucker spectrometer and Shimadzu GC-MS QP 5050A respectively. Ketones, *o*-phenylenediamine and CdCl_2 were all commercial products and were used without further purification.

General procedure for the preparation of 1,5-benzodiazepines. 3-Pentanone (1.72 g, 20 mmoles), *o*-phenylenediamine (1.08 g, 10 mmoles) and CdCl_2 (0.12 g, 0.5 mmole) were ground well using mortar and pestle and transferred to a 50 mL round bottomed flask and heated at 80-85°C for 10-20 min. After completion of the reaction {monitored on TLC [eluant; EtOAc: Pet.ether (1:6)]}, the reaction mixture was diluted with water and extracted with EtOAc (2×10 mL). The combined organic layer was dried over anhydrous Na_2SO_4 , concentrated *in vacuo* and subjected to silica gel column chromatography to get 2,2,4-triethyl-3-methyl-2,3-dihydro-1*H*-1,5-benzodiazepine (2.24 g, 92%). The aqueous layer was disposed after treatment with 10% sodium sulphide solution. Yellow precipitate of CdS was filtered and kept aside for future use. All the products prepared by this procedure were characterized by comparison of their IR, NMR spectra and GC-MS spectral analysis with authentic samples.

2,2,4-trimethyl-2,3-dihydro-1*H*-1,5-benzodiazepine, 3a: Yellow crystals; m.p. Found 137-38°C, Reported: 136-38°C⁵; IR (KBr): 3343, 1657, 1610 cm^{-1} ; ^1H NMR (CDCl_3): δ 1.35 (s, 6H), 2.20 (s, 2H),

2.35 (s, 3H), 2.95 (br s, 1H, NH), 6.65-7.3 (m, 4H); ^{13}C NMR (CDCl_3): δ 29.7, 30.4, 45.0, 67.8, 121.6, 122.0, 125.4, 126.7, 137.8, 140.6, 171.8; MS: m/z 188 (M^+).

2,4-Diethyl-2-methyl-2,3-dihydro-1*H*-1,5-benzodiazepine, 3b: Yellow solid; m.p. Found 138°C, Reported 137-39°C⁵; IR (KBr): 3335, 1648, 1605 cm^{-1} ; ^1H NMR (CDCl_3): δ 0.99 (t, 3H, $J = 6.9$ Hz), 1.25 (t, 3H, $J = 7.0$ Hz), 1.70 (q, 2H, $J = 6.9$ Hz), 2.15 (m, 2H), 2.35 (s, 3H), 2.69 (q, 2H, $J = 7.0$ Hz), 3.25 (br s, 1H, NH), 6.78-7.35 (m, 4H); ^{13}C NMR (CDCl_3): δ 8.7, 10.8, 26.9, 35.5, 35.7, 42.1, 70.5, 121.8, 125.4, 126.2, 127.0, 137.9, 140.8, 175.6; MS: m/z 216 (M^+).

2,2,4-triethyl-3-methyl-2,3-dihydro-1*H*-1,5-benzodiazepine, 3c: Colorless solid; m.p. Found 142-44°C, Reported 143-44°C¹¹; IR (KBr): 3325, 1640, 1610 cm^{-1} ; ^1H NMR (CDCl_3): δ 0.75-1.05 (m, 10H), 1.20-1.38 (m, 4H), 1.50-1.65 (m, 2H), 2.40-2.60 (m, 2H), 2.87 (q, 1H, $J = 6.9$ Hz), 3.75 (br s, 1H, NH), 6.57 (d, 1H, $J = 8.0$ Hz), 6.65 (t, 1H, $J = 8.0$ Hz), 6.90 (t, 1H, $J = 8.0$ Hz), 7.38 (d, 1H, $J = 8.0$ Hz); ^{13}C NMR (CDCl_3): δ 7.5, 7.9, 11.5, 12.3, 28.0, 28.4, 35.6, 46.2, 68.6, 117.5, 118.0, 126.6, 132.8, 139.0, 142.4, 173.4; MS: m/z 244 (M^+).

2-Methyl-2,4-diisobutyl-2,3-dihydro-1*H*-1,5-benzodiazepine, 3d: Yellow solid; m.p. Found 119°C, Reported 118-20°C¹¹; IR (KBr): 3335, 1645, 1600 cm^{-1} ; ^1H NMR (CDCl_3): δ 0.95-1.05 (m, 12H), 1.32 (s, 3H), 1.49-1.52 (m, 2H), 1.65-1.75 (m, 1H), 2.05-2.25 (m, 3H), 2.24 (d, 2H, $J = 12.7$ Hz), 6.60-6.65 (m, 1H), 6.85-6.95 (m, 2H), 7.05-7.15 (m, 1H); ^{13}C NMR (CDCl_3): δ 22.5, 22.7, 24.2, 24.9, 25.0, 26.3, 28.1, 43.5, 51.7, 51.9, 70.8, 121.4, 121.5, 125.2, 127.2, 137.8, 140.4, 173.9; MS: m/z 272 (M^+).

10-Spirocyclopentane-1,2,3,9,10,10*a*-hexahydrobenzo[*b*]cyclopenta[*e*][1,4]diazepine, 3e: Yellow solid; m.p. Found 136-38°C, Reported 137-38°C⁵; IR (KBr): 3335, 1660, 1610 cm^{-1} ; ^1H NMR (CDCl_3): δ 1.30-1.90 (m, 12H), 2.30-2.60 (m, 3H), 4.50 (br s, NH, 1H), 6.70-7.39 (m, 4H); ^{13}C NMR (CDCl_3): δ 23.4, 24.1, 24.3, 28.7, 33.4, 38.5, 39.2, 54.4, 67.3, 118.6, 119.3, 126.9, 132.1, 139.2, 143.4, 178.0; MS: m/z 240 (M^+).

10-Spirocyclohexane-2,3,4,10,11,11*a*-hexahydro-1*H*-dibenzo[*b,e*][1,4]diazepine, 3f: Yellow solid; m.p. Found 136-38°C, Reported 136-37°C⁵; IR (KBr): 3290, 1645, 1605 cm^{-1} ; ^1H NMR (CDCl_3): δ 1.23-1.85 (m, 16 H), 2.30-2.70 (m, 3H), 4.45 (br s, NH, 1H), 6.65-7.35 (m, 4H); ^{13}C NMR (CDCl_3): δ 21.6, 21.7, 23.2, 24.5, 25.3, 33.5, 34.4, 39.3, 40.5, 52.4,

63.1, 121.3, 121.5, 126.3, 129.6, 138.1, 142.6, 178.9; MS: m/z 268 (M⁺).

10-Spirocycloheptan-6, 7, 8, 9, 10, 10a, 11, 12-octahydrobenzo[*b*] cyclohepta[*e*] [1,4]diazepine, 3g: Yellow solid; m.p. Found 136°C, Reported 135-36°C⁵; IR (KBr): 3235, 3280, 1645, 1600 cm⁻¹; ¹H NMR (CDCl₃): δ 0.90-1.95 (m, 20H), 2.25-2.95 (m, 3H), 3.60 (br s, NH, 1 H), 6.60-7.38 (m, 4H); ¹³C NMR (CDCl₃): δ 22.5, 23.2, 26.5, 28.4, 28.9, 29.5, 29.7, 30.1, 38.5, 40.9, 54.3, 72.5, 121.3, 121.5, 125.5, 127.6, 137.5, 139.8, 179.1; MS: m/z = 296 (M⁺).

2-Methyl-2, 4-diphenyl-2, 3-dihydro-1H-1, 5-benzodiazepine, 3h: Yellow solid; m.p. Found 150-52°C, Reported 151-52°C¹¹; IR (KBr): 3345, 1635 cm⁻¹; ¹H NMR (CDCl₃): δ 1.80 (s, 3H), 2.95 (d, 1H, *J* = 12.8 Hz), 3.15 (d, 1H, *J* = 12.8 Hz) 3.45 (br s, NH), 6.55-7.0 (m, 3H), 7.15-7.35 (m, 7H), 7.55-7.65 (m, 4H); ¹³C NMR (CDCl₃): δ 167.5, 146.6, 140.1, 139.5, 138.2, 129.8, 128.6, 128.4, 121.1, 127.1, 126.4, 125.5, 121.7, 121.5, 73.9, 43.2, 29.9; MS: m/z 312 (M⁺).

Acknowledgements

One of the authors Jayashankara V P wishes to thank Mrs Faheemunnisa, Assistant Mistress, Government Model Higher Primary School, Aswathnagar, Bangalore 560094, Karnataka, India for the encouragement. Thanks are also due to the SIF and Department of Organic Chemistry, Indian Institute of Science, Bangalore for recording NMR spectra.

References

- Sternbach L H, *Angew Chem Int Ed Engl*, 10, **1971**, 34.
- Fryer R I, *Bicyclic Diazapines*, in The Chemistry of Heterocyclic Compounds, Vol. 50, edited by Taylor E C (Wiley, New York) **1991**, Chapter II.
- Haris R C & Straley J M, *US Patent* 1,537,757, **1968**; *Chem Abstr*, 73, **1970**, 100054W.
- (a) Aversa M C, Ferlazzo A, Giannetto P & Kohnke F H, *Synthesis*, **1986**, 230.
(b) Chimirri A, Grasso S, Ottana R, Romeo G & Zappala M, *J Heterocycl Chem*, 27, **1991**, 371.
(c) El-Sayed A M, Abdel-Ghany H & El-Saghier A M M, *Synth Commun*, 29, **1999**, 3561.
(d) Reddy K V V, Rao P S & Ashok D, *Synth Commun*, 30, **2000**, 1825.
- Yadav J S, Reddy B V S, Praveenkumar S & Nagaiah K, *Synthesis*, **2005**, 480.
- Herbert J A L & Suschitzky H, *J Chem Soc Perkin Trans 1*, **1974**, 2657.
- Balakrishna M S & Kaboudin B, *Tetrahedron Lett*, 42, **2001**, 1127.
- Jung D L, Choi T W, Kim Y Y, Kim I S, Park Y M, Lee Y G & Yung Y G, *Synth Commun*, **1999**, 194.
- Reddy B M & Sreekanth P M, *Tetrahedron Lett*, 44, **2003**, 4447.
- Benjaram M R, Sreekanth P M & Vangala R R, *J Mol Catal Commun A: Chem*, 225, **2005**, 71.
- Curini M, Epifano F, Marcotullio M C & Rosati O, *Tetrahedron Lett*, 42, **2001**, 3193.
- Surya K D, Richard A & Gibbs, *Tetrahedron Lett*, 45, **2005**, 1811.
- Chen W Y & Lu J, *Synlett*, **2005**, 1337.
- Pozarentzi M, Stephanatou J S & Tsoleridis C A, *Tetrahedron Lett*, 43, **2002**, 1755.
- Kaboudin B & Navaee K, *Heterocycles*, 55, **2001**, 1443.
- Adharvana M & Syamasundar C K, *Catal Commun*, 6, **2005**, 67.
- Gowravaram S, Reddy G S K K, Reddy K B, Reddy N M & Yadav J S, *Adv Synth Catal*, 346, **2004**, 921.
- Jarikote D V, Siddiqui S A, Rajagopal R, Daniel T, Lahoti R J & Srinivasan K V, *Tetrahedron Lett*, 44, **2003**, 1835.
- Pasha M A, Swamy N R & Jayashankara V P, *Indian J Chem*, 44B, **2005**, 823.